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Abstract

We investigate a technique to adapt unsu-
pervised word embeddings to specific ap-
plications, when only small and noisy la-
beled datasets are available. Current meth-
ods use pre-trained embeddings to initial-
ize model parameters, and then use the la-
beled data to tailor them for the intended
task. However, this approach is prone to
overfitting when the training is performed
with scarce and noisy data. To overcome
this issue, we use the supervised data to
find an embedding subspace that fits the
task complexity. All the word representa-
tions are adapted through a projection into
this task-specific subspace, even if they do
not occur on the labeled dataset. This ap-
proach was recently used in the SemEval
2015 Twitter sentiment analysis challenge,
attaining state-of-the-art results. Here we
show results improving those of the chal-
lenge, as well as additional experiments in
a Twitter Part-Of-Speech tagging task.

1 Introduction

The success of supervised systems largely depends
on the amount and quality of the available train-
ing data, oftentimes, even more than the particu-
lar choice of learning algorithm (Banko and Brill,
2001). Labeled data is, however, expensive to ob-
tain, while unlabeled data is widely available. In
order to exploit this fact, semi-supervised learn-
ing methods can be used. In particular, it is pos-
sible to derive word representations by exploiting
word co-occurrence patterns in large samples of
unlabeled text. Based on this idea, several meth-
ods have been recently proposed to efficiently es-
timate word embeddings from raw text, leverag-
ing neural language models (Huang et al., 2012;
Mikolov et al., 2013; Pennington et al., 2014; Ling

et al., 2015). These models work by maximizing
the probability that words within a given window
size are predicted correctly. The resulting embed-
dings are low-dimensional dense vectors that en-
code syntactic and semantic properties of words.
Using these word representations, Turian et al.
(2010) were able to improve near state-of-the-art
systems for several tasks, by simply plugging in
the learned word representations as additional fea-
tures. However, because these features are esti-
mated by minimizing the prediction errors made
on a generic, unsupervised, task they might be
suboptimal for the intended purposes.

Ideally, word features should be adapted to the
specific supervised task. One of the reasons for
the success of deep learning models for language
problems, is the use unsupervised word embed-
dings to initialize the word projection layer. Then,
during training, the errors made in the predictions
are backpropagated to update the embeddings, so
that they better predict the supervised signal (Col-
lobert et al., 2011; dos Santos and Gatti, 2014a).
However, this strategy faces an additional chal-
lenge in noisy domains, such as social media.
The lexical variation caused by the typos, use of
slang and abbreviations leads to a great number
of singletons and out-of-vocabulary words. For
these words, the embeddings will be poorly re-
estimated. Even worse, words not present on the
training set will never get their embeddings up-
dated.

In this paper, we describe a strategy to adapt un-
supervised word embeddings when dealing with
small and noisy labeled datasets. The intuition be-
hind our approach is the following. For a given
task, only a subset of all the latent aspects captured
by the word embeddings will be useful. Therefore,
instead of updating the embeddings directly with
the available labeled data, we estimate a projec-
tion of these embeddings into a low dimensional
sub-space. This simple method brings two funda-
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mental advantages. On the one hand, we obtain
low dimensional embeddings fitting the complex-
ity of the target task. On the other hand, we are
able to learn new representations for all the words,
even if they do not occur in the labeled dataset.

To estimate the low dimensional sub-space, we
propose a simple non-linear model equivalent to a
neural network with one single hidden layer. The
model is trained in supervised fashion on the la-
beled dataset, learning jointly the sub-space pro-
jection and a classifier for the target task. Using
this model, we built a system to participate in the
SemEval 2015 Twitter sentiment analysis bench-
mark (Rosenthal et al., 2015). Our submission at-
tained state-of-the-art results without hand-coded
features or linguistic resources (Astudillo et al.,
2015). Here, we further investigate this approach
and compare it against several state-of-the-art sys-
tems for Twitter sentiment classification. We also
report on additional experiments to assess the ad-
equacy of this strategy in other natural language
problems. To this end, we apply the embedding
sub-space layer to Ling et al. (2015) deep learning
model for part-of-speech tagging. Even though
the gains were not as significant as in the senti-
ment polarity prediction task, the results suggest
that our method is indeed generalizable to other
problems.

The rest of the paper is organized as follows: the
related work is reviewed in Section 2. Section 3,
briefly describes the model used to pre-train the
word embeddings. In Section 4, we introduce the
concept of embedding sub-space, as well as the
the non-linear sub-space model for text classifica-
tion. Section 5, details the experiments performed
with the SemEval corpora. Section 6 describes ad-
ditional experiments applying the embedding sub-
space method to a Part-of-Speech tagging model
for Twitter data. Finally, Section 7 draws the con-
clusions.

2 Related Work

NLP systems can benefit from a very large pool
of unlabeled data. While raw documents are usu-
ally not annotated, they contain structure, which
can be leveraged to learn word features. Con-
text is one strong indicator for word similarity,
as related words tend to occur in similar con-
texts (Firth, 1968). Approaches that are based on
this concept include, Latent Semantic Analysis,
where words are represented as rows in the low-

rank approximation of a term co-occurrence ma-
trix (Dumais et al., 1988), word clusters obtained
with hierarchical clustering algorithms based on
Hidden Markov Models (Brown et al., 1992), and
continuous word vectors learned with neural lan-
guage models (Bengio et al., 2003). The result-
ing clusters and vectors, can then be used as more
generalizable features in supervised tasks, as they
also provide representations for words not present
in the labeled data (Bespalov et al., 2011; Owoputi
et al., 2013; Chen and Manning, 2014).

A great amount of work has been done on the
problem of learning better word representations
from unsupervised data. However, not many stud-
ies have discussed the best ways to use them in
supervised tasks. Typically, in these cases, word
representations are directly used as features or to
initialize the parameters of more complex mod-
els. In some tasks, this approach is however prone
to overfitting. The work presented here aims to
provide a simple approach to overcome this last
scenario. It is thus directly related to Labutov
and Lipson (2013), where a method to learn task-
specific representations from general pre-trained
embeddings was presented. In this work, new fea-
tures were estimated with a convex objective func-
tion that combined the log-likelihood of the train-
ing data, with regularization penalizing the Frobe-
nius norm of the distortion matrix. That is, the ma-
trix of the differences between the original and the
new embeddings. Even though the adapted em-
beddings performed better than the purely unsu-
pervised features, both were significantly outper-
formed by a simple bag-of-words baseline.

Most other approaches, simply rely on addi-
tional training data to fine tune the embeddings for
a given supervised task. In Bansal et al. (2014),
better word embeddings for dependency parsing
were obtained by using a corpus created to cap-
ture dependency context. This technique requires,
nevertheless, of a pre-existing dependency parser
or, at least a parsed corpus. For some other tasks,
it is possible to collect weakly labeled corpora by
making strong assumptions about the data. In Go
et al. (2009) a corpus for Twitter sentiment anal-
ysis was built by assuming that tweets with posi-
tive emoticons imply positive sentiment, whereas
tweets with negative emoticons imply negative
sentiment. Using a similar corpus, Tang et al.
(2014b) induced sentiment specific word embed-
dings, for the Twitter domain. The embeddings
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were estimated with a neural network that mini-
mized a linear combination of two loss functions,
one penalized the errors made at predicting the
center word within a sequence of words, while the
other penalized mistakes made at deciding the sen-
timent label. Weakly labeled data has also been
used to refine unsupervised embeddings, by re-
training them to predict the noisy labels before us-
ing the actual task-specific supervised data (Sev-
eryn and Moschitti, 2015).

3 Unsupervised Structured Skip-Gram
Word Embeddings

Word embeddings are generally trained by opti-
mizing an objective function that can be measured
without annotations. One popular approach is to
estimate the embeddings by maximizing the prob-
ability that the words within a given window size
are predicted correctly. Our previous work has
compared several such models, namely the skip-
gram and CBOW architectures (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and the
structured skip-gram approach (Ling et al., 2015),
suggesting that they all have comparable capabil-
ities. Thus, in this study we only use embeddings
derived with the structured skip-gram approach, a
modification of the skip-gram architecture that has
been shown to outperform the original model in
syntax based tasks such as, part-of-speech tagging
and dependency parsing.

Central to the structured skip-gram is a log lin-
ear model of word prediction. Let w = i denote
that a word at a given position of a sentence is
the i-th word on a vocabulary of size v, and let
wp = j denote that the word p positions further
in the sentence is the j-th word on the vocabu-
lary. The structured skip-gram models the follow-
ing probability:

p(wp = j|w = i) ∝ exp
(
Cp

j ·E ·wi
)

(1)

Here, wi ∈ {1, 0}v×1 is a one-hot representa-
tion of w = i. That is, a vector of zeros of the
size of the vocabulary v with a 1 on the i-th entry
of the vector. The symbol · denotes internal prod-
uct and exp() acts element-wise. The log-linear
model is parametrized by the following matrices:
E ∈ Re×v, is the embedding matrix, transform-
ing the one-hot representation into a compact real
valued space of size e, Cp

j ∈ Rv×e is a set of out-
put matrices, one for each relative word position p,

projecting the real-valued representation to a vec-
tor with the size of the vocabulary v. By learn-
ing a different matrix Cp for each relative word
position, the model captures word order informa-
tion, unlike the original skip-gram approach that
uses only one output matrix. Finally, a distribution
over all possible words is attained by exponentiat-
ing and normalizing over the v possible options. In
practice, negative sampling is used to avoid having
to normalize over the whole vocabulary (Goldberg
and Levy, 2014).

As most other neural network models, the struc-
tured skip-gram is trained with gradient-based
methods. After a model has been trained, the low
dimensional embedding E · wi ∈ Re×1 encapsu-
lates the information about each word wi and its
surrounding contexts. This embbeding can thus
be used as input to other learning algorithms to
further enhance performance.

4 Adapting Embeddings with Sub-space
Projections

As detailed in the introduction and related work,
word embeddings are a useful unsupervised tech-
nique to attain initial model values or features
prior to supervised training. These models can
be then retrained using the available labeled data.
However, even if the embeddings provide a com-
pact real valued representation of each word in a
vocabulary, the total number of parameters in the
model can be rather high. If, as it is often the
case, only a small amount of supervised data is
available, this can lead to severe overfitting. Even
if regularization is used to reduce the overfitting
risk, only a reduced subset of the words will actu-
ally be present in the labeled dataset. Words not
seen during training will never get their embed-
dings updated. Furthermore, rare words will re-
ceive very few updates, and thus their embeddings
will be poorly adapted for the intended task. We
propose a simple solution to avoid this problem.

4.1 Embedding Sub-space

Let E ∈ Re×v denote the original embedding
matrix obtained, e.g. with the structured skip-
gram model described in Equation 1. We define
the adapted embedding matrix as the factorization
S · E, where S ∈ Rs×e, with s � e. We estimate
the parameters of the matrix S using the labeled
dataset, while E is kept fixed. In other words, we
determine the optimal projection of the embedding
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matrix E into a sub-space of dimension s.
The idea of embedding sub-space rests on two

fundamental principles:

1. With dimensionality reduction of the embed-
dings, the model can better fit the complexity
of the task at hand or the amount of available
data.

2. Using a projection, all the embeddings are
indirectly updated, not only those of words
present in the labeled dataset.

One question that arises from this approach, is
if the estimated projection is also optimal for the
words not present in the labeled dataset. We as-
sume that the words on the labeled dataset are, to
some extent, representative of the words found in
the unlabeled corpus. This is a reasonable assump-
tion since both datasets can be seen as samples
drawn from the same power-law distribution. If
this holds, for every unknown word, there will be
some other word sufficiently close it in the embed-
ding space. Consequently, the projection matrix
S will also be approximately valid for those un-
seen words. It is often the case that a relatively
small number of words of the labeled dataset are
not present on the unlabeled corpus. These words
are not represented in E. One way to deal with this
case, is to simply set the embeddings of unknown
words to zero. But in this case, the embeddings
will not be adapted during training. Random ini-
tializations of the embeddings seems to be help-
ful for tasks that have a higher penalty for missing
words, although it remains unclear if better initial-
ization strategies exist.

4.2 Non-Linear Embedding Sub-space Model

The concept of embedding sub-space can be ap-
plied to log-linear classifiers or any deep learning
architecture that uses embeddings. We now de-
scribe an application of this method for short text
classification tasks. In what follows, we will refer
to this approach as Non-Linear Sub-space Embed-
ding (NLSE) model. The NLSE can be interpreted
as a simple feed-forward neural network model
(Rumelhart et al., 1985) with one single hidden
layer utilizing the embedding sub-space approach,
as depicted in Fig. 1. Let

m = [w1 · · ·wn] (2)

denote a message of n words. Each column
w ∈ {0, 1}v×1 of m represents a word in one-
hot form, as described in Section 3. Let y de-
note a categorical random variable overK classes.
The NLSE model, estimates thus the probability of
each possible category y = k ∈ K given a mes-
sage m as

p(y = k|m) ∝ exp (Yk · h · 1) . (3)

Here, h ∈ {0, 1}e×n are the activations of the hid-
den layer for each word, given by

h = σ (S ·E ·m) (4)

where σ() is a sigmoid function acting on each
element of the matrix. The matrix Y ∈ R3×s

maps the embedding sub-space to the classifica-
tion space and 1 ∈ 1n×1 is a matrix of ones that
sums the scores for all words together, prior to nor-
malization. This is equivalent to a bag-of-words
assumption. Finally, the model computes a prob-
ability distribution over the K classes, using the
softmax function.

Compared to a conventional feed-forward net-
work employing embeddings for natural language
classification tasks, two main differences arise.
First, the input layer is factorized into two com-
ponents, the embeddings attained in unsupervised
form, E, and the projection matrix S. Second, the
size of the sub-space, in which the embeddings are
projected, is much smaller than that of the origi-
nal embeddings with typical reductions above one
order of magnitude. As usual in this kind of mod-
els, all the parameters can be trained with gradient
methods, using the backpropagation update rule.

5 NLSE for Twitter Sentiment Analysis

In this section, we apply the NLSE model to the
message polarity classification task proposed by
SemEval, for their well-known Twitter sentiment
analysis challenge (Nakov et al., 2013). Given a
message, the goal is to decide whether it expresses
a positive, negative, or neutral sentiment. Most
of the top performing systems that participated in
this challenge, relied on linear classification mod-
els and the bag-of-words assumption, representing
messages as sparse vectors of the size of the vo-
cabulary. In the case of social media, this approach
is particularly inefficient, due to the large vocabu-
laries necessary to account for all the lexical vari-
ation found in this domain. Thus, these models
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Figure 1: Illustration of the NLSE model, applied
to sentiment polarity prediction.

Positive Neutral Negative
Development 3230 4109 1265
Tweets 2015 1032 983 364
Tweets 2014 982 669 202
Tweets 2013 1572 1640 601

Table 1: Number of examples per class in each
SemEval dataset. The first row shows the training
data; the other rows are sets used for testing.

need to be enriched with additional hand-crafted
features that try to capture more discriminative as-
pects of the content, most of which require exter-
nal tools (e.g., part-of-speech taggers and parsers)
or linguistic resources (e.g., dictionaries and sen-
timent lexicons) (Miura et al., 2014; Kiritchenko
et al., 2014). With the embedding sub-space ap-
proach, however, we are able to attain state-of-
the-art performance while requiring only minimal
processing of the data and few hyperparameters.
To make our results comparable to other systems
for this task, we adopted the guidelines from the
benchmark. Our system was trained and tuned
using only the development data. The evaluation
was performed on the test sets, shown in Table 1,
and we report the results in terms of the average
F-measure for the positive and negative classes.

5.1 Experimental Setup

The first step of our approach requires a corpus of
raw text for the unsupervised pre-training of the
embedding matrix E. We resorted to the corpus of
52 million tweets used in (Owoputi et al., 2013)
and the tokenizer described in the same work. The
messages were previously pre-processed as fol-
lows: lower-casing, replacing Twitter user men-
tions and URLs with special tokens and reducing
any character repetition to at most 3 characters.
Words occurring less than 40 times in the cor-
pus were discarded, resulting in a vocabulary of
around 210,000 types. Then, a modified version
of the word2vec tool1 was used to compute the
word embeddings, as described in Section 3. The
window size and negative sampling rate were set
to 5 and 25 words, respectively, and embeddings
of 50, 200, 400 and 600 dimensions were built.

Our system accepts as input a sentence rep-
resented as a matrix, obtained by concatenating
the one-hot vectors that represent each individual
word. Therefore, we first performed the afore-
mentioned normalization and tokenization steps
and then, converted each tweet into this represen-
tation. The development set was split into 80%
for parameter learning and 20% for model evalu-
ation and selection, maintaining the original rela-
tive class proportions in each set. All the weights
were initialized uniformly at random, as proposed
in (Glorot and Bengio, 2010). The model was
trained with conventional Stochastic Gradient De-
scent (Rumelhart et al., 1985) with a fixed learning
rate of 0.01, and the weights were updated after
each message was processed. Variations of learn-
ing rate to smaller values, e.g. 0.005, were con-
sidered but did not lead to a clear pattern. We ex-
plored different configurations of the hyperparam-
eters e (embedding size) and s (sub-space size).
Model selection was done by early stopping, i.e.,
we kept the configuration with best F-measure on
the evaluation set after 5-8 iterations.

5.2 Results

In general, the NLSE model showed consistent
and fast convergence towards the optimum in very
few iterations. Despite using class log-likelihood
as training criterion, it showed good performance
in terms of the average F-measure for positive
and negative sentiments. We found that all em-
bedding sizes yield comparable performances, al-

1https://github.com/wlin12/wang2vec
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Figure 2: Average F-measure on the SemEval
test sets varying with embedding sub-space size
s. Sub-space size 0 used to denote the baseline
(log-linear model).

though larger embeddings tend to perform better.
Therefore, we only report results obtained with the
600 dimensional vectors. In Figure 2, we show the
variation of system performance with sub-space
size s. The baseline is a log-linear using the em-
beddings in E as features. As it can be seen, the
performance is sharply improved when the em-
bedding sub-spaces are used. By choosing dif-
ferent values of s, we can adjust the model to the
complexity of the task and the amount of labeled
data available. Given the small size of the train-
ing set, the best results were attained with the use
of smaller sub-spaces, in the range of 5-10 dimen-
sions.

Figure 3, presents the main results of the ex-
perimental evaluation. As baselines, we consid-
ered two simple approaches: LOG-LINEAR, which
uses the unsupervised embeddings directly as fea-
tures in a log-linear classifier, and LOG-LINEAR*,
also using the unsupervised embeddings as fea-
tures in a log-linear classifier, but updating the em-
beddings with the training data. These baselines,
were compared against two variations of the non-
linear sub-space embedding model: NLSE, where
we only train the S and Y weights while the em-
beddings are kept fixed, and NLSE*, where we
also update the embedding matrix during training.
For these experiments, we set s = 10. The re-
sults in Figure 3a, show that our model largely
outperforms the simpler baselines. Furthermore,
we observe that updating the embeddings always
leads to inferior results. This suggests that pre-

computed embeddings should be kept fixed, when
little labeled data is available to re-train them.

Comparison with the state-of-the-art
We now compare the NLSE model with state-of-
the-art systems, including the best submissions to
previous SemEval benchmarks. We also include
two other approaches that are related to the one
here proposed, where a neural network initialized
with pre-trained word embeddings is used to learn
relevant features. Specifically, we compare the
following systems:
• NRC (Kiritchenko et al., 2014), a support

vector machine classifier with a large set
of hand-crafted features, including word and
character n-grams, brown clusters, POS tags,
morphological features, and a set of features
based on five sentiment lexicons. Most of the
performance was due to the combination of
these lexicons. This was the top system in
the 2013 edition of SemEval.

• TEAMX (Miura et al., 2014), a logistic re-
gression classifier using a similar set of fea-
tures. Additional features based on two dif-
ferent POS taggers and a word sense dis-
ambiguator were also included in the model.
This approach attained the highest ranking in
the 2014 edition.

• CHARSCNN (dos Santos and Gatti, 2014b),
a deep learning architecture with two con-
volutional layers that exploit character-level
and word-level information. The features are
extracted by converting a sentence into a se-
quence of word embeddings, and the individ-
ual words into sequences of character embed-
dings. Convolution filters followed by max
pooling are applied to these sequences, to
produce fixed size vectors. These vectors are
then combined and transfered to a set of non-
linear activation functions, to generate more
complex representations of the input. The
predictions, based on these learned features
are computed with a softmax classifier.

• COOOOLLL (Tang et al., 2014a), a support
vector machine classifier that leverages the
sentiment specific word embeddings, dis-
cussed in Section 2. The embeddings are
also processed with a convolution filter, but
the output of this operation is used to pro-
duce three representations obtained with dif-
ferent strategies, namely with max, min and
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(a) Comparison of two baselines with two variations
of the NLSE model

(b) Performance of state-of-the-art systems for Twitter senti-
ment prediction

Figure 3: Average F-measure on the SemEval test sets

average pooling. The final feature vector is
obtained by concatenating these representa-
tions and Kiritchenko et al. (2014) feature set.

• UNITN (Severyn and Moschitti, 2015), an-
other deep convolutional neural network that
jointly learns internal representations and a
softmax classifier. The network is trained
in three steps: (i) unsupervised pre-training
of embeddings, (ii) refinement of the em-
beddings using a weakly labeled corpus, and
(iii) fine tuning the model with the labeled
data from SemEval. It should be noted that
the system was trained with a labeled corpus
65% larger than ours2. This system made the
best submission on the 2015 edition of the
benchmark.

The results in Figure 3b, show that despite be-
ing simpler and requiring less resources and la-
beled data, the NLSE model is extremely compet-
itive, even outperforming most other systems, in
predicting the sentiment polarity of Twitter mes-
sages.

6 Generalization to Other Tasks

While the embedding sub-space method works
well for the sentiment prediction task, we would
like to know its impact in other settings that are
known to benefit from unsupervised embeddings.
Thus, we decided to replicate the part-of-speech
tagging work in (Ling et al., 2015), where pre-
training embeddings have been shown to improve

2The UNITN system was trained with around 11,400 la-
beled examples, whereas we used only 6,900.

the quality of the results significantly.

6.1 Sub-space Window Model
Part-of-speech tagging is a word labeling task,
where each word is to be labeled with its syntactic
function in the sentence. More formally, given an
input sentence w1, . . . , wn of n words, we wish to
predict a sequence of labels y1, . . . , yn, which are
the POS tags of each of the words. This task is
scored by the ratio between the number of correct
labels and the number of words to be labeled.

We modified (Collobert et al., 2011) window
model, to include the sub-space matrix S. The
probability of labeling the word wt with the POS
tag k is given by

p(y = k|mt+p
t−p) ∝ exp (Yk · ht + b) , (5)

where

mt+p
t−p = [wt−p · · ·wt · · ·wt+p] (6)

denotes a context window of words around the
t-th word, with a total span of 2p + 1 words. ht

denotes the activations of a hidden layer given by

ht = tanh

H ·


S ·E ·wt+p

· · ·
S ·E ·wt

· · ·
S ·E ·wt−p


 . (7)

Here tanh denotes the hyperbolic tangent, act-
ing element-wise. Aside from embedding E and
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sub-space S matrices, the model is parametrized
by the weights H ∈ Rh×ps and Y ∈ Rv×h as well
as a bias b ∈ Rv×1.

Note that if S is set to the identity matrix, this
would be equivalent to the original Collobert et al.
(2011) model.

Tanh

Softmax
  over
  Tags

Subspace 

Word Embeddings 

ppl r juz unrealiableSome

Window

Verb

Figure 4: Illustration of the window model
by (Collobert et al., 2011) using a sub-space layer.

6.2 Experiments

Tests were performed in Gimpel et al. (2011) Twit-
ter POS dataset, which uses the universal POS tag
set composed by 25 different labels (Petrov et al.,
2012). The dataset contains 1000 annotated tweets
for training, 327 tweets for tuning and 500 tweets
for testing. The number of word tokens in these
sets are 15000, 5000 and 7000, respectively. There
are 5000, 2000 and 3000 word types.

Once again, we initialized the embeddings
with unsupervised pre-training using the struc-
tured skip-gram approach. As for the hyperpa-
rameters of the model, we used embeddings with
e = 50 dimensions, a hidden layer with h = 200
dimensions and a context of p = 2 as used in (Ling
et al., 2015). Training employed mini-batch gradi-
ent descent, with mini batches of 100 sentences
and a momentum of 0.95. The learning rate was
set to 0.2. Finally, we used early stopping by
choosing the epoch with the highest accuracy in

the tuning set. As for the sub-space layer size, we
tried three different hyperparameterizations: 10,
30 and 50 dimensions.

6.3 Results

Figure 5 displays the results. Using the setup that
led to the best results in the sentiment prediction
task (FIX), that is, fixing E and updating S, leads
to lower accuracies than the baseline (TRAIN-ALL,
s = 0). We also see that different values of s do
not have a very strong impact in the final results.

Sentiment polarity prediction and POS tagging
differ in multiple aspects and there may be more
than one reason for this poorer performance. One
particularly relevant aspect, in our opinion, is the
way words that have no pre-trained embedding are
treated. In the case of sentiment prediction, these
words were set to having and embedding of zero.
This fits the use of the bag-of-words assumption
and the fact that only one label is produced per
message, as there are many other words to draw
evidence from. In the case of POS tagging a hy-
pothesis must be drawn for each word, using a
shorter context. Thus, ignoring a word means that
context is used instead, which is a frequent cause
of errors.

One way around this problem would be to up-
date the parameters of S and E, but this leads to
results similar to the experiment without the sub-
space projections (TRAIN-ALL). This is expected
as the sub-space layer was designed to work on
fixed word embeddings, if these are updated its
benefits are lost. Thus, we solve this problem
by fixing all the embeddings, except for the word
types not found in the pre-training corpus. That
is, instead of leaving the unknown words as the
zero vector, we use the labeled data to learn a bet-
ter representation. Using this setup (TRAIN-OOV),
we can obtain a small but consistent improvement
over the baseline. While these improvements are
not significant, as this task is not as prone to over-
fitting as in sentiment analysis, this is a good check
of the validity of our method.

7 Conclusions

We presented a new approach to use unsupervised
word embeddings based on the idea of finding a
sub-space projection of the embeddings for a given
task. This approach offers two main advantages.
On the one hand, it allows to indirectly update
embeddings unseen during training. On the other
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Figure 5: Results for the part-of-speech task on
the ARK POS dataset, for different strategies to
update the embeddings and with variations of the
sub-space size. Sub-space size 0 used to denote
the baseline (window model).

hand, it reduces the number of model parameters
to fit the complexity of the task. These properties
make this method particularly useful for the cases
where only small amounts of noisy data are avail-
able to train the model.

Experiments on the SemEval challenge corpora
validated these ideas, showing that such a simple
approach can attain state-of-the-art results compa-
rable with the best systems of past SemEval edi-
tions and often outperforming them in all datasets.
It should be noted that this is attained while keep-
ing the original embedding matrix E fixed and
only learning the projection S with the supervised
data. Additional experiments on the Twitter POS
tagging task indicate however that, the technique
is not always as effective as in the sentiment clas-
sification task. One possible explanation for the
different behavior is the use of embeddings of ze-
ros for words without pre-trained embedding. It is
plausible that this has a stronger effect on the POS
tagging task. Another aspect to be taken into ac-
count is the fact that both tasks could have a differ-
ent complexity which would explain why adapting
E in the POS taks yields better results. Optimality
of the embeddings for each of the tasks might also
come into play here.

The implementation of the proposed method
and our Twitter Sentiment Analysis system has
been made publicly available3.

3https://github.com/ramon-astudillo/
NLSE
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